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FOREWORD

The Post-Doctoral Program at Rome Air Development Center is pursued
via Project 9567 under the direction of Dr. W. W. Everett, Jr. The Post-
Doctoral Program is a cooperative venture between RADC and the participating
universities: Syracuse University (Department of Electrical and Computer
Engineering, the U. S. Air Force Academy (Department of Electrical Engineering),
Cornell University (School of Electrical Engineering), Purdue University
(School of Electrical Engineering), University of Kentucky (Department
of Electrical Engineering), Georgia Institute of Technology (School of
Electrical Engineering), Clarkson College of Technology (Department of
Electrical Engineering), State University of New York at Buffalo (Department
of Electrical Engineering), Florida Technological University (Department
of Electrical Engineering), Florida Institute of Technology ( College
of Engineering), Air Force Institute of Technology (Department of Electrical
Engineering), and the University of Adelaide (Department of Electrical
Engineering), in South Australia. The Post-Doctoral Program provides, via
contract, the opportunity for faculty and visiting faculty at the participating
universities to spend a year full time on exploratory development and
operational problem-solving efforts with the post-doctorals splitting
their time between RADC (or the ultimate customer) and the educational
institutions.

This effort was conducted via RADC Job Order No. 9567 0006 for the
Federal Aviation Administration. Mr. Fred Sakate was the FAA focal point,
and he participated closely in the technical . coerdination meetings and

cable testing sesslions.
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CHAPTER 1

introduction

Earth conduction problems are encountered in various communication
and power system circults in connection with strons, electromagnetic dis-
turbances caused by nearby lightning discharges. Excessive interference in
conventional exposed metallic communication lines is indicated unless
adequate protection measures are provided. This may require extra electro-
magnetic shielding of certain important communication lines and associated
buildings housing sensitive equipment and/or the installation of protective
devices on certain communication equipment.

This study is primarily concerned with the theoretical analysis of
the resultant circult disturbances caused by earth conduction effects of
lightning discharges. Two basic analytical models are presented in this
study to describe the varlous kinds of coupling mechanisms between a
lightning discharge and anearth-return transmission line.

The theoretical study described in this report is part of a larger
study program to provide protection for communication electronics equip-
ment against transient electromagnetic disturbances. Current and voltage
pulses are induced in cables running between buildings or equipment
enclosures. These currents and voltages are then coupled into the terminal
equipment. The electromagnetic disturbances may be the result of nearby
lightning activities or man-made electromagnetic pulses. This larger
study, known as the FAA Lightning Protection Study, has been performed
by the Post-Doctoral Program through several of |ts member universities
for the Federa! Aviation Administration. The institutions Include the
Alr Force Institute of Technology, Florida Institute of Technology,

Georgla Institute of Technology, and Purdue University, The individual
participants In the FAA Lightning Protection Study are listed in Appendix D.




1.1 FAA Lightning Protection Study

Increasing use of solid state, integrated circuit electronics in FAA
communication and control equipment means that reliance on the over-voltage
protection adequate for higher voltage electron tube and discrete transistor
circuitry would be itnadequate. The over-voltage protection of carbon blocks,
in the several hundred volt range, and neon bulbs, with long, relatively
high inductance leads in the 40 - 100 volt range, is not adequate for the
solid state circuits which operate at lower voltage levels (presently down
to 5 volts).

The first phase of the program is an overall study and consists of
three technical tasks: (1) the determination of the voltage and current
levels likely to be conducted to FAA equipment; (2) the determination cf the
susceptibility levels of FAA Instrument Landing System [AN(GRN-27(V)]; and
(3) the determination of lightning protective dev.ces that are avallable to
raduce the levels of (1) to those permitted by (2). These three tasks have
been performed in parallel with close interaction and are essentially
completed(')’(z)’(B). Appendix D lists the schools having primary
responsibility for each of the tasks. This report Is the result of the
work done under the first technical task. Only the theoretical foundation
and analyslis are presented in this report; detailed numerical calculations

are to be reported in a companion report.

1.2 Lightning Induced Transients on Buried Cables

Numerous Interference and protection problems are encountered in the
development and operation of extensive communication and power systems,
These problems are caused by the internal coupling of such systems with
each other and by the external presence of the earth which, In some measure,
Is involved as a return conductor. The earth also serves as a return con-
ductor for lightning currents, which often occasion disturbances In commun-
fcation and power circults, Lightning disturbances are largely atmospheric
phenomena governed bv the physical propertles of the air. However, the
behavior and effects of the 1lghtning near the surface of the ground in
communication and power systems are primarily earth conduction problems
caused by the finite conductivity of the earth., Therefore, problems arise
both In communication and power system clrcuits concerning the protectlion
of transmission lines and assoclated equlpment agalnst Interference and
possible breakdown caused by excessive voltage or current surges caused by
l1ghtning discharges.
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To deal adequately with such problems, it is neceassary to consider
theoretical solutions to the basir problem in which the earth, as well as
conducting current paths, are involved in the lightning discharge. The
analysis of such problems s inherently more complicated than the problem
of completely metallic circuits embedded in an [nsulating medium, since the
great extent of the earth necessitates the use of electromagnetic field
theory, rather than conventional transmission line or circuit theory, in the
solution of most aspects of the problem. ({t is necessary to restrict the
analysis to fairly simple fundamenta) cases, in which simplified models of
the earth, cable, and lightning channel geometries are used, on account of
the complexities that would otherwise arise. Therefore, lonization effects
caused by high induced voltages or electrolvtic actions are not consldered.
Also, the heterogeneous character of the earth as a conductor and an elect-
rolyte are not conslidered. Furthermore, the extremely variable nature of
the lightning currents and voltages are not considered; however, typical

average values of the lightning channel parameiers are used,

1.3 Overview

This report is organized as follows:

First, the basic equations which govern the behavior of the electromagnetic
disturbances caused by earth conductlon effects of lightning discharges are
listed In Chapter 2, along with the definltions of the scalar, vector, and
Hertz potentials, which will be used to determine the form of the solutions,
Then, the fields due to an electric dipole In free space are glven in Chapter 3.
These free space dipole flelds are then generalized to determine the fields

of a vertical or horizontally oriented dipole above a flat earth, A knowledge
of these flelds Is essential for determining the mutual coupling between the
dipole-1ike llghtning channel and a buried wire, Next, the actual current
induced on a burfed wire |s determined approximately (in Chapter 4) and
exactly (in Chapter §) from a knowledge of the mutual coupling impedances,
which were determined previously In Chapter 3. In both the approximate and
the exact formulations, the results are presented in the form of an equivalent
distributed transmission Vine mcdel of the coupling phenomena. (n Chapter &,
the induced electric fleld Intensity along the outer canductor of the cable

is also determined for a lightning stroke to qround, In Chapter 5, the
characteristic equation of the transmission line ls solved, via Integral
transform techniques, to determine the characterlistic values of the trans-

mission line, e.g., the propagation constant and assoclated propagation modes. {
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The rasulting Induced current and voltage surges on the outer armour of
the cable Is thereby determined for a direct strike via arcing to the
cabla and for an indirect strike via conductive energlization through the
earth, Once the Induced current and voltage surges are known on the outer
armour of the cable, the voltage and current standing waves on the trans-
mission |ine can be determined by finding, and Integrating over the length
of the line, the Green's Functions for a distributed voltage or current
sourca, as s done In Chapter 6. Next, the induced current and voltagc

surgas on the center conductor of the coaxial cable, resulting from the pene-

tration of the lightning induced discharge through the outer armour anc the
innar shleld of the coaxial cable are determined via the Impedance transfer
functions, which are developed in Chapter 7. Some of the details of the
above analysis are presented In the Appendices.
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CHAPTER 2
Basic Equations

This chapter of the study lists the basic equations which govern the

behavior of the resultant electromagnetic disturbances caused by earth 4
conduction effects of lightning discharges. For a complete exposition g&
of the subject matter and for other aspects of the subject matter than ;;
are of primary concern here, reference is made to the literature on é{
electromagnetic theory, transmission line and circuit theory. f
2.1 Maxwell's Equations f;
We start with the time dependent Maxwell's equations for the field 3
vectors £, H, D, and B. \E
- OxE(F,t) = -2 B(F (2.1)
xE(r,t) = 57 B(r,t) Ve e
£
WA, =T (0 + TE e + 2 06,0 (2.2) :
k
v-B(r,t) = 0 (2.3) g

7-D(F,t) = po_(F,t) (2.4)

where ps and js are respectively the source charge and current densitles

and J is the conduction current density. Obviously, we will be dealing with

four different media: ailr, earth, conducting wires, and insulating layers.

Each medium s characterized by its permeabllity, permittivity, and conductivity:

His €1 and iy where | stands for elther a(air), e(earth), c(conductor), or
I{(insulator). The constitutive relations In each medium are
B(r,t) = wA(r,0) (2.5)
D(r,t) = e,%(?,t) (2.6)
It = 0 E(F,0) (2.7)
5 .
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it s desirable to transform equations (2.1) - (2.7) to the ''frequency"
domain., For this purpose, we define the Fourier transform palrs between
t and u:

F(F,t) = [ F(Fw)etiet gy (2.6)
B = o [ P00 o (2.8)

where F and F are any of the field variables or sources deflned above
and j = v=1. Therefore, in the 'frequency' domain, the equations become

UxE = -juwb (2.11)
UxH = 35 + 3+ jmﬁ (2.2")
VB =0 (2.3")
V-§= ps (2.10‘)
and
B = uiﬁ (2.5')
g = e,f (2.6')
J = OIE (2.7")

where the arguments : and W are dropped, for simplicity. While the source
terms OS and-js are arbitrary, they are related by the conservation of
charge, 1.e.

V-(js +3J) = -jwps (2.9)
Making use of the conservation of charge (2.9) and the constitutive relations
(2.5') - (2.7'), the flux densities D and B can be eliminated fn favor of the
field Iintensities 3 and ﬁ, i.e.

wi = -Juil; A (2.1
WH = +jue, E + .TS (2.2")
7.H =0 (2.3")
VE = -




where the complex permeability and complex permittivity are defined by
W=

i}

T B

are complex quantities.

2.2 Hertz Vectors

Hertz showed that under ordinary conditions, the field intensities 4
and H are derivable from a single vector funétion ;, known as the Hertz vector.
It can be shown, by direct substitution, that equations (2.1") - (2.4") are
satisfied by writing

E = k? ™ V{(V.T) (2.10)

Fo= Jw UxT (2.11)

with the Hertz vector T specified by the differential equation

viE 4 kT = -3,/ Gu ) (2.12)

where

2 2 2.
kp = (By + Jap)” = wil &

witha 20, B 20,

It Is recalled that the general solution of an inhomogeneous linear
differential equation consists of two parts: a homogeneous solution and a
particular solution. One possible way to express the particular solution is

5> >
~jk'lr-r'|

- I o e
e J LG B (2.13)
V'

The homogeneous solution can be expressed in various forms. For the problem

at hand, it is convenient to express It in terms of the elementary cylindrical
>
wave functionsZn h’ More specifically, each component of the Hertz vector T

can be written as




00

5 QIno I

naew~oo

£2f
. Cn(r)Zn(Tr) e “= dr

where EI = /Tz-k%

represents the transverse part of the propagation constant. To insure

and where the dummy variable T of the Integration

convergence at z»t®, we choose Re &; >0 .,

In equation (2.14), the coefficient Cn(T) is left unspecified. To
complete the description, it is necessary to state the boundary conditions:
the tangential components of the field intensities T and F are continuous
at a boundary free of surface current., The boundary conditions can also
be expressed In terms of the Hertz vector T and its derivatives and will be

discussed in detail later,

2.3 Vector and Scalar Potentials
The Hertz vector is also related to the vector and scalar potential

R and ¢ via the following relations

R = u'(o' + jwe') T = jwéiﬁ‘F (2.15)

(2.14)

¢ = =V (2.16)
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CHAPTER 3

Fields Duc To An Electric Dipole

[N

3.1 An Electric olipole in Free Space

Consider an efectric dipole Id2 surrounded by free space (e=€0, Bty . 0=0),
For convenience, the coordinate system is so chosen that the dipole is located at
the origin and orlentad along the z-axis. |If the medium is assumed to be infin-
itely large, then the only condition that the Hertz vector must satisfy s the
radiation condition at infinity, Theref?re, the Hertz vector Is obtained from
equation (2.13) by noting that jséldzs(? );, i.e.

EN I -
J e : (2

0 Y r2 + z2

whe e

T
o = WHE

it is iastructive and convenient to express equation (3.1) as the super-

pooavion of elementary cylindrical waves.: For this purpose, use is made of

SocracTeid's Formula(S)’x6)’ and we obtain,
> Ao 1dR T =l
= A —————— et .2
| mT=+ z] e, fj G Jo(Tr)e dt (3.2)
[ R AN S
50 = //TZ - kbz
and ite branch cut s chosen such that - m/2 < arg EO < %‘- A comparison of

“peniion (3.2) with equation (2.14) shows that only the. term Independent of angle
Gy s used, as expected from physical considerations.,

T » Vartical Electric Délpole Above a Flat Earth

How consider two reglons separated by an interface z=0. The space above the
ruincfice is taken to be free space (u=u6, =€y, o=0), while the medium below the
inceiiace is taken to be earth (ue:uo, Egr ce). Qur aim is to derive the expres-
sicus for the fields generated by an electric dipole Id% oriented along the z-axis
ard 1ocated at z=z,, as shown in Fig. la. The procedure Is as follows. |In the
x- o of the earth, the field, referred to as the primary field, Is due to the

ditole alone, and the Hertz potential

P
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is given by equation (3.2), with the dipole shifted from z=0 to z=z

0° in the
presence of the earth, the primary fleld Is partially reflected by the inter-

face and partially transmitted into the earth.

It will be demonstrated later
that for the geometry under consideration, all the boundary conditions can

be satisfied by working with only the z-component of the Hertz vector ?, and

only the term Independent of angle (n=0) In equation (2.14) Is needed. Thus,

for z > 0, the z~component of the Hertz potential can be written as

1dg - ‘1 ~{z-26'€° "%
e
"za = 4 j EQ‘J_E; [o Eo of RZZ(T)e ]Jo(Tr)dT (3'3)

and for 2z < 0

Lo
1d%

zE '
' = + ] e
ze ﬂﬂweo o Tzz(T)e JO(Tr) dt

(3.4)
where RZZ(T) and TZZ(T) are the reflection and transmissfon coefficlients to be
determined and k° = jwuo(ce + jwee)

F’enT-ke

-and the branch is chosen such that~%s argé;e < -721-

To determine the reflection and transmission coefficients Rzz(r) and

Tzz(r), it Is necessary to appeal to the boundary conditions. Since ;1 = 2 ﬂz‘
and U {s Independent of ¢, we have,’from equations (2.10) and (2.11)
2 2
AB'TI’ A~ 3 ki
- z} zl 2
[ et 2 ( ! + k) (3.5)
on
? e o zl 2
A (01 + jwa‘) 5o ¢ (3.6)
Thus, the boundary conditions at z=0 require that
2 2
SR (3.7)
oraz araz ’
+ Jue o .- b+ Jue ) o e (3.8)
0 3r e J e’ Tor

1
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for all values of r. Since equations (3.7) and (3.8) must be valld for all

values of r, these two equations can be simplified by integrating with respect

tor, l.e,,
anza awze
3z | oz (3.9)
2 2
k0 Ta ™ ke L (3.10)

In equation (3.10), the cosfficients are expressed in.a convenlent form by

noting that u_ = My = ug. By substituting equations (3.3) and (3.4) into

equations (3.9) and (3.10), we obtain

2
2k, 2.5
Ry () = = [ c e OO (3.11)
0 ke é;() + k0 Ee
2
2k, “r -~z £
U e e (3.12)
ke g0 + k0 é;e.

Upon substituting equation (3.11) into equation (3.3), and making use of
Sommerfeld's formula, we obtain

1
- 1d2 e e -
"o Tt T, [R v AJ (3.13)

where

R -v/rz + (z - zo)z

R = ¢42 + (z + 20)2

(3.14)

and

. 2 : TEq 'Eo(z + zo) J (tr) dr
A= 2k0 \ 5 5 e 0
Eolke Ep * Ko &)

12
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The field intensities In the air are determined by substlituting equation
(3.13) into equations (3.5) and (3.6). More specifically, the cylindrical

components of the fields, for z > 0, are

E = 4] |dt b2 z | (3.15)
r KFEE;' ordz “t .
E =0 ) 16
6 , (3.16)
1dg a
Ez=+j me—c; ZQ, +;—2—Zt ] (3.17)
z
¢ and
H =0
3 r
A 142 9 '
H =0 (3.19)
j where ~JkgR ~JkoR!
] 7 w8 + & A,
t R RV (3.20)
and 2
Zy = kg Z¢ - (3.21)

The significance of the terms Zt and Zz are discussed In Appendix C.

3.3 Horizontal Electric Dipole above a Flat Earth

Next, consider a horlzontal electric dipole 1d% oriented along the x-
axis, as shown in Fig. 1b. If only the x-component of the Hertz vector

A

: ?, i.e., T e x ™ werg,usedg theibounq§ry conditions at the Interface z=0
cannot be met(7). In fact, we have to supplement iﬂx with the homogeneous
solution as glven in equation (2.14) for inz. Stnce the boundary conditions

'varétsomewhat complicated, It is convenlent to wérk with Cartesian coordinates

first, and then to transform the results into cylindrical coordinates.

13
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Slnce_p

T = ﬁwx‘ + 2 Ty

then the rectanqular components of the field Intensities £ and ﬁ,are, from

(3.22)

equations (2.10) and (2.11),

a2 2
) 9 Tl d "zl
Ex = ki “xi + axz *raxaz (3.23)
2 2
3 Txi d “zi
Ey T + oydz (3.24)
2 azn i azw i
E = k T + LN + z!
P i "zt T Sx3z 52 (3.25)
and
i anz‘
. Hx - (Of"'jwet) - (3.26)
awxi a"zl
H, = (o +jue) g = ) (3.27)
CLY
Hz =’(0i+_|w€i) By (3.28)

Thus the continulty of Ex"Ey’ Hx’ and Hv at z=0 dfctates that

on on
on o
2 p & za 2 3 "me ze
ko Mo *5x (Bt BT T ke Txe B Rt BET (3.29)
am an Cul on
d; xa zay _ 9 Xe . “'ze
Nt ) T ay Cax R (3.30)

14




2 3‘"za 2 aTrze (3.31)

kO oy N ke dy

am om am om
2 xa za 2 xe ~ ze
0 (5 ox ) ke (53 X ) (3.32)

These equalitlies must be valid for all values of x and y. Thus, by Integrating

k

equations (3.30) and (3.31) with respect to y, we obtaln, at z=0,

T on an T
xa za _ xe ze \
- ox + dz ox + 9z (3.330
2 2
Ko Tn = Ko T (3.34)

2 2
kO Tya = ke Tye (3.35)
K 2 aTrxa _— 2 81Txe

0 oz e oz (3.36)

]
in the absence of the flat earth, the primary fleld Tea ts stmply, from

equation (2.13) and Sommerfeld's formula,

' e [t ~lz=25184
"a ™ +jhnweo I go Jo(tr)e dt (3.37)

in the presence of the flat earth, there also exists the zrcomponents of the

Hertz vector in the alr and In the earth, 1.e. Tra and Toe? and the x-components
of the Hertz vector {n the alr and in the earth, |.e. Tea and Tee The x~
component of the Hertz vector In the alr Ta Includes the primary fleld
ﬂx; , as glven in equation (3.37). Before writing down these terms, it Is
necessary to examine thelr angular dependence. it is noted

that L and Toe MuSt satisfy equations (3.35) and (3.36) for z=0 and for

all values of 0 € r <, 0< ¢ € W itisalsonoted that the primary part of ﬂx;, as
given by equation (3.37), is independent of ¢. Thus, In view of the orthogonality

properties of ejndl 0 < ¢ < 21, we conclude that "xa and “xe oontain only

15
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the terms independent of angle (nw0). Thus, for LI and 7__, only the n=0

term of equation (2.14) Is retalned, fe for z > 0

- -lz-z, € 2§
" +15%%%; [;“Eiﬁ e 0°°0 , Rxx(r)e 0 Jo(tr) dt (3.38)
0

, (de z8q
e = +j 1;;(38—0. J‘:Txx(‘l’)e JO(TI’) dT (3.39)

To determine the ¢ dependence of “ia and "ie’ equation (3.33) Is

expressed In cylindrical coordinates

Mea Mg M e oM e
D = . | ]
cos § == + == cosd == + —= (3.33")

B As T a and T 3¢ Independent of ¢ and equatfon (3.33') is valld for all

values of 0 £ ¢ € 2, LI and Te rnust have cos¢-type dependence. Thus, In
writing down the expressions for L and L it Is only necessary to keep the

n=+1 terms, I.e.

Cerddt
ﬁza +J I;TTU)SO
e

-Z_EO
IE;z(t)e Jl(rr)dr:}cos ¢ (3.40)

T I R zE '
ze uﬂweo Isz(r)e J](Tr)dT:Icos ¢ (3.41)

Upon substitution of equations (3.38)-(3.41) Into equatlons (3.33'), (3.34)-(3.36),

we obtain:

2

k ~2.&
-5 .0 T 0~0 (3.42)
Tax (1) = 2 RV

R (1) w="f1 - 2%, ]Q-ZOEO (3.43)
> & £y + L
0 o
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2
P I & . L 0% (3.44)
XZ

(g - EH> -2

; . 00 . (3.45)
ke g0 * k0 ge

sz(r) = -2

H

Thus, the Hertz potential due to a horizontal dipole 1d% orilented along the
x-axis and located at z#z, can be determined by combining equations (3.42) -
(3.45) with (3.38) - (3.41). 1t is noted that T,q C8N be written In a rather

simple form:

~ -jkoR -jkoR'
Ide e e - Al
ﬂxa = 4] aneo l_ R * R? A ] ’ (3.46)

where R and R' are deflned in Sectlion 3.2 and

£ 1 £ (z +z,)
A =2 —_—— e Y 0 Jo(tr) dt . (3.47)
0 Eo[ﬁo + Eel
Also
Ta ™ ¥ JE%%%;' A cos ¢ (3.48)
where 2
(£,-E )T ~E (z +z,)
A om o2 fm g A e 0 0 Jl(rr) dt (3.49)
0 ke B * ke be

The transverse electric fleld Intensities In the air are determined by su'-
stituting equatioms (3.46) and (3.48) Into equations (3.23)-(3.28). More

speclifically,

2
E = 1dt (-2 (r) + 5%’2'22('” (3.50)
a2
E, = 162 [xons Z0(r)] _ (3.51)
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whara
t v ‘fumc . 0 2r  Jue c T '

o0 -y
| X « 1-(1+yr)e ¥
2, % > Juu I dr w=e J (tr) = o= Jun
£ an c 0 Ty 0 an [+ (Yr)Z (3.53)

whora v k.

Agatn, the significance of the terms Zt end Zz are discussed in Appendix C.
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CHAPTER 4

Coupling Model (Approximate Solution)

Our next task is to evaluate the current induced on the conductor by

the lightning strokes. Practically all burled cables presently in use have

some sort of plastic jacket. Even if a bare conductor Is used, there will
be a laver of oxidation at the surface of the metal wire. In addition, it is {
likely that a thin layer of air is present between the metal surface (ov |
metal oxide surface) and the soil. |In short, we should not expect the bare
wire to be in electrical contact with the soil. To be realistic, a lossy
dielectric layer is Included in our consideration.
Most cables are buried 30''-36" below the surface of the earth. For most
frequencies of practical interest, the current which arrives at the far end
of the wire due to a lightning stroke Is essentially insensitive to the var-
iation of the depth of the cable, provided that the wire is lorg and that the
depth 1s deep enough. Thus, In this section, the model depicted in Figure 2b,
which is an approximation to the configuration shown in Flgure 2a, will be used
to derive a set of differential equations governing the current induced on the

buried wire.

4.1 Transmisslon Line Equatlons
The axial direction of the wire is taken to be the x-axis, (Figure 3).

he field at any arbitrary point in the space can be decomposed into two

parts. One part is the field produced by the external sources, in the absence
of the wire and the insulation layer, and will be designated by a superscript 0;
the second part is due to the current induced on the conducting wire, and will
be designated by superscript 1.

To find the fileld produced by the current on the wire, we start with one

of the Maxwell's equations (2.1') in integral form:

al o 1
&Clﬁ od2=-‘]wJS‘§ . d§ (4.1)

and choose the contour to be C'. as shown inFigure 3a, As shown In Figure

40, the line integral along the path C‘ can be broken into flve parts
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e A - bt

C” 1 b 1 X+ A% |
f e (r,x)dr + I Er, (r,x)dr + J E i (b,x)dx
) c X
+ CE ‘( +Ax)dr + | E '( +Ax)dr
. oy (rax r Fre r,x
X+AX G 1 00 1
= -jw B.. (r,x)dr + | B, (r,x)dr| dx
ol fe
X b c

After collecting the terms and noting that

¢ * 1 _ oo aErel(r,x)
J Ere (r,x)dr + J Ere (r,x+Ax)dr = Ax J —g dr
© C [

b < c aErﬂ(r,x)

J E . (r,x)dr + J E., (r, x+dx)dr = Ax I dr

ri r4 X
c b b
we have
¢ BEr"(r,x) coBEre‘(r,x) 1
N T L PRI

= - jwAx ‘:[CB ](r,x)dr + roB ‘(r,x)dr]
Jb e' c Se

if a voltage V and a flux ¢ are Introduced as

€ o

V(x) = J E  (r,x)dr + I E ' (r,x)dr
b ri c e
c o

o(x) = f By (r,x)dr + I By (r,x)dr

e
b c
then the equation (4.6) becomes
dvix) _ _; _ 1
v Jud (x) Ezl (b,x)

This is one of the desired differential equations.
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(4.3)

(4.4)

(4.5)

(4.6)




To find the second differential equation, we examine another one of

the Maxwell's equations (2.2') in integral! form:

§ Bl.d? = f (o|+Jwe|)E"-d§ (h.7)
C2 Sz
and choose the contour to be CZ’ as shown in Figure 3b. Clearly, the line
Integral along path AB and along path DE cancel exactly. When the wire Is made
of good conductors, i.e., oc>>w£c, the displacement current term in the wire

may be neglected, then

JBCDﬁ]'dI = 1 (x+ M) (4.8)
JEFAﬁ‘.dTL’ = -1 (x) (4.9)

where 'x Is the axfal current carried by the wire. Substituting these two

equations Into (4.10), we have

d'x(x{ = (0 +jwe, JE_, (b,x)-21b (L.10)
dx | 'Jwel ri » X m .10

To make (4.9) and (4.11) useful, It Is necessary to express V, &, Erl"

and Ex|1 In terms of 'x explicitly, For thls purpose, three Impedances are
Introduced(s):

(1) Surface Impedance (or skin effect impedance)

E (o) E%(b,x) +E ! (b,x)

Z = = (L‘u“ )
$ F (X lx&)
(1i) Longitudinal (inductive) Impedance
- ®(x)
2= e (4.12)

X
(111) Transverse impedance

V(x) (4.13)

ZT e

2wb(0|+jm£|)Er|](b,x)
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Upon substituting (4.11)-(4.13) into (4.6) and (4.9), these two

equations assume the form of the transmission line equations.

W w1 60 (2 +2) €, (0 (ho1y)
di_(x)
1
= T, V(x) (4.15)

Figure 4 gfves a simple and famlliar representatlion for the transmission line
equations. As we are mainly Interested in the current lx’ 1t would be desirable
te eliminate the voltage V in favor of the current lx. However, the resulting
equation would be extremely compllicated as the Impedances ZL’ ZS’ and ZT are also
cependent cn x. Fortunately, the impedances Zs, ZL’ and ZT are approximately
constants under certain clrcumstances, to be discussed in Appendix A. Under the
apprroximation indicated there, these impedances are

Z =7, * sz (4.16)

Ip = In * Iy (k.17)
The expressions for ZLI’ ZLZ’ ZTI’ ZTZ’ and ZS are given in Equation (A.32)-
(A.36) While these equatlons are approximate, they are valid for most si{tuations
of practical interest. In addition, from the definition of, and the expressions
for, the longitudinal and transverse impedance ZL and ZT’ It is clear that these
expressions can be extended to Include multi-~layer cables. When the impedances

2 ZL’ and Z, are approximately constant, equations (4.14) and (4.15) reduce

S’
to the well-krown transmission line equations with a distributed source term
EO (x). The solution to such a system of coupled differential equations can

best be expressed in terms of voltage and current Green's functions as

discussed in Chapter 6.
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4.2 Distributed Fields Due to Lightring Strokes to Ground

We shall use the results just obtained in Chapter 3 to calculate the
fields and the potentials of the lightning stroke to ground. The lightning
strokes are represented by a current | along the z-axis. The current
path Is subdivided into small segments dz and the Hertz vector T due to each
segment |s glven by equations (3.4) and (3.12). Thus, the total Hertz
vector, for z < 0, is

w0 2k, T ~2'§, + z§
G ! dz! rw 9 e 0 ¢y (1) dT (4.18)
ze TWE, o Ik K 0

*Te "0 " "0 e

and the scalar potential ¢e s, by substituting the above equation into (2.16),

(r,2) o' i) e (tr) (4.19)
¢ (r,z2) = = j 4. {(tr) drt 19
e ey Jo Ro ok Peg Kk PE) O

Of particular Interest to us is the case of low frequencies where
We << g, and the displacement current term is negliyible. Under such
conditions, a rather simple approximation for (4.19) can be obtained. By
letting we=0, we obtaln,

~ | ® zZT
®e(r,z) 2“Ge Jo e Jo(rr) dt

)

The integral can be evaluated (7 and leads to

o, (2122 (4.20)

& (r2)

which Is the same as the potential at (r,z) inside or on the surface of the
earth when a dc current | s entering at the origin.
In particular, the distributed source Eo(x) is given by

dé

e
Eg(x) = - 55—
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CHAPTER §

Codpling Model (Exact Solution)

In order to establish exact formulas for the propagation characteristics
on earth return conductors, rigorous theoretical solutions for the propagation
of cutrent along an extended conductor In Infinite contact with the earth are
obtained for the case In which the current enters the earth at an electrode
which represents the terminal effects of a lightning channel. The general
case is again considered heFe, In whi=h the conductor Is not necessarily (n
direct contact with'the earth, but has a contact impedance with the earth,
as in :cables with coverings provided for corrosion or mechanical protection
or electrical shields,

5.1 Transmission Line Equations-

Conslder.an é*tendeaﬂﬁtrafghf éonauéfof of radlus po half buried in the xy
plane of a rectangular coordinate systém (x,y,z), as shown in Figure 5, and let
the x axis extend aleng the conductor.A>Let ¢c(x) and ¢e(x;y) be the scalar
potential In the conductor and in the garth (at the separation distance v),
respectively. Also, let Ac(x) and Ae(x,y) be the x components of the vector
potentials in the conductor and In the earth (at the separation distance y).
respectively. It is assumed that there are no radial vartations in the fleld
variables inside the conductor.

The x comporent of the electric field Intensity Ec(x) along the surface
of the conductor is °

E(x) = - o5 . (x) -jua_(x) (5.1)
and the x component of the electric field intensity Ee(x,po) In the earth
adjacent to the conductor surface at y=0, is

£ (x,0,) = = 75 b (x,0,)-JuA_(x 0p) (5.2)
Since there is no change in the magnetic flux between the conductor and the
(10)

earth adjacent to It

AC(X) = Ae(x’oo) 27
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The electric field intensity Ec(x) along the surface of the conductor i{s also

gfven by
E_(x) = 2,1 (x) (5.4)

where Zi Is the interna)l impedance of the conductor per unit length, As shown

in Appendix B,Z ok | Jo(koo)
i Jwe Zﬂpo J](kpo)

From the above equations

. d ‘ .
- = e— - E. 0
EL0x00) -2, 1 (x) = o= [ (x) -0, (x,p,)] (5.4)
The resultant electric field intensities are regarded as the sum of an
Impressed primary field (denoted by a single prime superscript), due to the
1ightning channel, and an induced secondary field (denoted by a double prime

superscript), due to current in the conductor, i.e., let

E (xy) = £ 'x,y) + B, (x,y) (5.6)
and

¢e(X,y) = ¢e‘(x,y) + ¢é“(x,y) (5.7)

¢C(X) = ¢ ' (x) + ¢c“(X) (5.8)

The induced secondary potential between the conductor and an adjacent point in the

earth has the following relation to the leakage current ll(x) where

b, (x) = 0" (x,py) = 1,(x)/ Y, | (5.9)
and -
Im(x) = -J%~lc(x) (5.10)

and Y, s the admittance of the conductor Insulation per unit length. Also, for a

wire of Infinite length, the induced secondary electric field intensity due

to a current lc(x) distributed along the entire length of the conductor is

00 40
" [ [ __Sj_ i d
E, (x.po) J dx Zl(rpox) lc(x')+ de dx Zt(rpox) o lc(x‘) (5.11)
- . ]
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where

AT
and
..x __‘: x-xl (5'13)
and Zz(rp X) is the longitudinal electric fleld intensity at the surface of the
0

conductor at x, for a unit axial current at x', while Zt(r x) is the trans-

o)
0
verse electric field intensity at the surface of the conductor at x, for a

unit radial current leaving the conductor at x',

Therefore, by superposition, the following integro~differential equation

is obtained for the current lc:

- d 1 d e d

2 . — — e ' — ' -

- L o] e ) e ] 20w

E . - -0

] +an

- 3 - ' ') = - .
- [ ez AERCOREAR (5.14)
me

||

- B

A %' where the impressed electric field intensity Eo(x) along the conductor is

e N

B K

¢ % related to the Impressed electric field intensity Eé(x,po) In the earth next

b .‘é. to the conductor by

A 4

o] x) = - S0x) = E! (x,py) = 5= [9!(x) =9 ! (x,0,)] (5.15)
v %f dx e 70 dx “c e '"0

; Ht

] :

% 3 Equation (5.14).1s an exact generalization of the approximate transmission

line equations (4,14) and (4.15) derived earlier, Once the current lc(x)

Is determined from the above transmission line equatlion, the conductor

potential ¢C(x) and the potentlal In the earth ¢e(x.y) are also determined as

Integrals over the current.

The difference between the Impressed potential




¢O(x,y) and the resultant potential ¢e(x,y) in the earth, which is the

negative induced secondary earth potential ¢é%x,y),15 given by (10)
4o d
- = t — (!
o) = o bey) =+ | ez (n VB 1 6er) (5.16)
-o0

Also, the induced secondary potential ¢g(x) is greater than the induced

sécondary potential ¢g(x,y) of an adjacent point in the earth by an amount

lz(x)/Y] such that (10)
1 d o d
- B2 e — ¢ - []
botxang) = 0,00 == G 1,60+ [ axzyr ) &1 6 (5.17)
oo PoX
5.2 integral Transform Representations

In order to solve the characteristic equation (5.14) for the current Iéx),

"a Fourler Integral transformation between the space variable x and the wave number

variable ¢ is introduced, l.e., let

: +oo )
—}?(x) = ._.L. I dC?(C)e*‘JCx (5.18)
2 o
: 40
flo) = 7%; J axF( x)e 15X ' (5.19)
2 e

where ¥ and ¥ are any of the field variables or sources defined above. Therefore,

In the ''wave number' domain, the characteristic equation for the transformed

current lc(c) ls




W——-—_—-mw ik s ey g
§ |
|
I
:
-+ gz (e, )+ 2+ g (e ) .
whare (
*JTX
L Y} . :
g(r )e Iﬂdx 2, (r )etd¥X |
and 'é
Lo - §x
e (3) » = fdxe(ne Ji
o Ll ! 0 (5.23) |
Therafore Hf
1 (&) = eg(R) / AR) (5.24)
whera
2 f
AZ) » 24 2 (5.25) *
and
Tul bz (rpo;) (5.26) *
1) |
7" v-l-- + zt(rpoc) (5.27) Ii
)

Therafore, to summarize the preceding derivations, the current IC(X), the

conductor potential ¢c(x),.and the potential ln-the:eanthiﬁe(x.y) are given by

| ® eo(c) +jtx
lc(x) - Z_;_rj I dz -'mTe (5.28)
(x) = ¢ (x,0,) = = rd 0® I, (r_ )| e*IEX (5.29) |
b = 84 {xip4 e Y] Y, % Pob )
” ¢ 2) +Jgx
¢e(x,y) - ¢O(x,y) - ;%%» J-m dc Y] zt(rpoc)e (5.30)

5.3 Propagation Constant

To find the current lc(x), the conductor potential tbc(x). and the earti
potential ¢e(x,y), the following transformatlions of the transfer and longltudinal

Impedances are required,




RN S,

N S ) TR

z (r )= dyz (r )e+JCx )
t ool [_th P X (5.31)
+o
2 (r )= | dxz (r, )etlEX (5.32)
¥ 0g% f_m 2 PgX
where
ﬁl(rp C) and zt(rp z) are the longitudinal and the transverse mutual impedances,

respegtlvely, of tao collinear conductor elements separated by the distance r.

When the earth is uniform and displacement currents inthe alr are neglected,
the functions zz(r } and zt(rp X) as derived earlier in Chapter 4 for a
horizontal dipole, gre 0

( e ]

Zt rpox TR 2pr ’
- I R
R D S BAL Lo ALY
A N ' (5:24)
0 ¥ PoX
where
Y= gk = [«%iE]1"2 =« [up (o+iwe) ]2 (5.35)

Therefore, the funct!onszérp C)”zl (ry C) are
o} 0

zt("ooc) = lﬁ]lwf Ko {lz]pg? : (5.36)
Joi .

2 () = o Ll Ueleg) - e K, (/fz"‘czpo)] (5.37)
Y Pg

Since the {mportant part of the integration range zz(r C) and zt(r ), as

Po DOC
given above, vary nearly jfogarithmically with ¢, large variations in z produce
small changes in these functions. For this reason it is permlissible to

approximate these functions at = CO’ where Co Is a constant so chosen that,

fn the important part of the Integration range,
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X

z,(r. V= 2z (r ) (5.39)
A poc L pOCO

With sufficient accuracy for most practical applications Co can be taken equal
to I', the propagation constant of the cable, In which case the following

transcendental equation for I' Is obtained:

!
? ﬂcﬂ‘ = 2l p (5.40)

or

~ Y ]
2 1,1 1 o 2, 2 2, 2
0

(5.41)

| f Fpo and pO(Y 2 + rz)iare less than 0.01, then

1.12...
A (5.42)

1
Juwe

iy ) * b g n LB

(5.43)
p,/# + 12
Junt 1.8
+ ‘ * e e e
ot 7—§7‘==iY T T

and

ré =
Vo1 g, Lz (5.44)
Y T Jwe Ibo

An approximate solution to the above transcendental equation is, by Inspection,

2y
rf el (5.45)



Inserting this value for Tinto the logarithmic terms above, the expression
1.52

Po
1, 158 (5.46)
%
Po

Since the ratio of the above logarithmic terms is practically unity, for all

PE e (5.47)

reduces to in

2,.1.2
e = 3 Y

practical purposes

5.4 Ground Strokes
The propagation characteristics of the current Ic(x) along the surface of

a buried cable due to lightning strokes to ground In the vicinity of the cable

are now determined.

5.4,1 Direct Strike (Arcing)
A lightning stroke to ground may arc directly to a buried cable in the

vicinity of the base of the lightning channel, in which case, virtually all

of the current will enter the sheath near the stroke point,
When a lightning current I5 enters the sheath at the point x = 0 and the
sheath is assumed to extend indefinitely in opposite directions from this point,

the sheath current |c(x) at the distance x is given approximately by

1 (x) = -'-zie - Tix| (5.48)
where T is the propagation constant of the earth/sheath clrcuit, as described
above.

The induced electric field Eo(x) along the inner surface of the sheath Is
|

Eolx) = 52, e fix (5.49)

is the internal surface impedance of the conductors per unit length,

where Z‘

as developed in Appendix B8.

5.L.2 Indirect Strike {Conductive Energization)

Alternatively, a lightning stroke to ground may be too distant from -
a4 buried cable in the vicinity of the base of the lightning channel to
arc directly to the cable; however, in this case the cable can still be
conductivily energized by the current entering the ground at the base
of the lightning discharge, which is easily represented mathematically by an

eiectrode near the wire.
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When a current ls enters the earth at an electrode at the separation distance

Pe from the conductor, the Impressed secondary earth potential along the

conductor is glven by

% (X,po) =z (r )1

(5.50)
PgX S
where
F = Vp 2 + xz
OSX S
and
~x = x-x!
Therefore, the Impressed electric fleld intenstey along the conductor Is then
given by
oo N
- f
E(x) = = S 40 xpg) = f dz ez, Je Jtx Je”k" (5.51)
z" t
- /5 7
Therefore,
' - !
eo(g) & ~ S jCZt (r )e 'CX (5~52)
Var Pgr

The conductor currept 1 R the conductor potentlal ¢ and the earth

potentia)l ¢e(x,y) are then glven by

* (r )
(X) - _J_g. f dz e zt rﬂsc e+_]§x
c Vam ! Vam alg)

+ w
' Z, %z, (r )
—S ~dz +Jox .5
x) = o f_m/i’ﬁ -—‘Z-(-.b..Q.L c(oC)e (5.54)
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T
AT T -

) 2
, ‘S .—g‘g A(C)Zt(r«) - zt(rpsq)zt(ryc) +ch (5.55)
\\ ¢, (x,y) w —= 0% e
:.'. V2 o vam Alz)
where
p= Pty (5.58)
Therefore, after substituting the values for the transformed longltudinal
Impedance zz(rp C) and the transformed transverse impedance zt(rp C)’ Into
5 5
equations (5.53)-(5.55) the conductor current !c(x), the conductor potential ¢c(x),
and the earth potential ¢e(x,y) are approximated by
. 's Y '
!C(X) - 72:;“ ToF Y (IX,FDS) (5-56)
's ]
9, (x) = I yoe ¢ (1o (5.57)
g 9o (Xo¥) T ¢ (x,y) ~ —% T E‘[ o - (I TIp ] 5.58
‘ e 0 f‘z-?f- j(ﬂ rrOsX s
: and
i Y K IY)
p & ° FjwE + Y K (1Y)
B 170
i
," where
-
3 d(u,v) @ f dt  ——
% o GEXT :
\ = Mg 4B I ahn g B I '
3 - .’*n‘n{"W‘”‘“h -
H . - o
and V) = & uq:(+u,4~v) - & "¢ (~u,+v)
; )
kS
A - +
i Qlu,v) = S0l tv) + ™ (-u 4v)
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i

The function ¢ Is related to the Bessel and Neumann functions as fullows“o) jﬂv
@ l’-j

D) = ol ingly - Pol) + I A (5. 59 :

: 'L- d

where ;

wa Jhte y2

and
Ao = ()
Al = W
and
wutTlo(1-1)v2A
1=2
A‘\,1 - g (1= 2,3,4,...)

where Jy and Yo denote, respectively, the zero order Bessel and Neumann functlions

of the complex argument v.

Also o

- 'y 24
Ke(W) = 1o n B+ § —E—py(1) (5.60)
1mg (11)
and

o (v) = Jo(iv)
1
(1) = 22 It - 5—:—,-)—-
where 1o and Ko are the modified Bessel and Neumann functlions, and Y s the

digamma function

U O e e e D -~ SR ———  —
e B i e — e o RS - . . G - - . :
- b T
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CHAPTER 6

Distributed Source

The voltage and current waves on the outermost conductor of a coaxial
transmission line excited by a distributed voltage source due to a lightning
discharge as determined elther approximately (Chapter 4) or exactly (Chapter 5)
are now determined.

6.1 Telegrapher's Equatfon

The transmission line extends for a length £ along the x-axlis of a rect-
angular coordinate system, as shown in Figure 6. The transmission line has a
terminating impedance Z” at x=0 and a terminating Impedance Z+ at x=4, The
transmission line is excited by a distributed voltage source V(x').
- The voitage V(x) and the current {(x) on the transmission line satisfy the

coupled wave equations, c.f, equations (4.14) and (4,15),

d .
= Ve-=21+ (6.1)
4 e et (6.2)
dx *

where
Z=ZL+ZSe |

) Y= 1/24

and y < Eo(x)

1 =0

These coupled wave equations are easily solved with the use of Green's Functions

for the voltage and current.

— e e e aE 2 Greenls Functioag. .
Co Z e —— - — g ‘*M '
‘ S — T et g1 4% e o

The voltage V(x) and the current |(x) on the transmission Tine due to a

distributed voltage source V(x') are determined by the superposition integrals
£
V(x) = Jo dx'Gv(x,x')V(x') i

g
L 1(x) = I dx'G, (x,x")V(x") |
0 i ;

g' : where the voltage Green's Function Gv(x,x‘) and the current Green's Function

G'(x,x') satisfy the coupled wave egquations
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f"‘v - 26, 4 6lx=x) (6.5)
A6 w-vg
dx 1 v (6.6)

where 8{x-x') !s the Dirac delta functlion at x = x!',

The coupled wave equations (6.5) and (6.6) are solved simultaneously to yield

Vet T* & T"eY¥) (x < x')
Gv(x,x') = (6.7)
Ve X & rFetYRe 2Ry (x > x')
f -
L e (x < x")
[
Gl(x,x‘) ~J (6.8)
- +
\ ¢

where the propagation constant Y and the characteristic impedance Zc are
defined by
y = NZ

2 = /1

c Y

and the reflection coefficlents I'iare defined by
zZ -2
--""""."“"‘-"-c"
=777
c
+
s L -Z : .
I‘n——:——-—-—-—
Z +2
c

The constants Vi are to be determined from the boundary conditlons which relate the

continuity of the current at x = X' and the discontinulity of the voltage at x = x',

f.e.,

AL S A e 3 i s e S e 2 S U



6, (x! +¢, x1) - G (xe, x') =0 < (6.9)
Gy (X' + g, X') - G, (X'=¢, X!) =1 (6.10)
The boundary conditions yleld the following values of Vt:
Vo= e-Yx‘ - I‘+e+Yx'e-2w' (6.11) ;
A . §
IS (6.12) :
A Ir‘
where j
A= - 2(1-T T'e 2% %‘
Therefore, |
[ -y X1 o+ ey X! - ‘
S L TR S T DD !
3(1-T Ie <1
G, (x,xt) = (6.13)
Hyxt e =yx! . _
+ S +P+§ T (e + Tre* T 2h) (x > x') ;
2(1-T I"eT4Y% ,.
\ :
( X! # Ayx! =2vh
+ & Y. r g:; e <V (e+'yx - r-e-'yx) (x < x!)
22_(1-T'T"e Ty ;;
G (x,x') = (6.14)
-PYX‘ - - ..Yxl - 7 _ 13
+ 8 _I‘+e‘2 . (e X I'+ewxe 272) (x > x') ;
2z_(1-1"T"e *1%) |
L |




CHAPTER 7

Transfer Functions

Once the Induced current and voltage surges on the outer conductor (p-p>)
of a coaxial conductor are known due to a nearby |lghtning discharge, the !nduced
current and voltage surges on the inner conductor (p = p<) can be determined via
the use of the impedance transfer functions for a coaxial cable, as developed in

Appendix B, As shown in the Appendix B,

Exlp-p> - zee'ext + Zel'!nt (7.1)
Ex‘p-p< = zte'ext + zil'lnt (7.2)
where
K ] Aee

zee -Juwé 2mp, A

S N A N §

ef -Jwe o P<Ps A
4 = ] --L ) —
le -jwt& 2w p_p, A'
; u ok 1 Au
it -Jwé an< At
and
ee = Y1(kp )Jolkp,) + Jy(ko)Yo(kp,)
Ay = Yalko,)dolko) + Jy(key)Yalko,)
and

A= Jdy(kp,)Ya(ko ) - Ja(kp )Ya(ke,)

A = Jylkp )Yy (kpy) = Ja(kpy)Ys (ko)

If the coaxial cable Is composed of several concentric shells rather than
Jjust one, as depicted above, then the above formulas can be used recursively to
obtain the current and voltages on the innermost cylinder due to the current

and voltages on the outermost cylinder.
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o CHAPTER 8

Conclusions

The above theorles are all that are necessary to find the induced voltage

9 and current surges on the center conductor of a coaxlal conductor resulting
R from the penetration of the outer armour and the Inner shield of the cable
3 of a translent electro-magnetic pulse caused by a nearby llghtning discharge

to earth.

The resulting equations are being programmed for numerical solution on a
digital computer,

When the program codes are completed and checked, a parametric

study of the results will be undertaken. The results of the parametric study

will be presented In a forthcoming report.
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APPENDIX A

Surface, Longltudinal and Transverse impedances

n this Appendix, the impedances defined in (4.11), (4.12), and (4.13) are

ovaluated and the results are Visted In (4,19)~(4,23)., The derivation Is put

tn an Appendix so that !t would not Interrupt the continuity and the development

of the main text. In additon, hecause of the geometry involved in the derivation,

{t s convenient to take a Fourfer transform with respect to x, instead of a Hankel

transform with respect to r, as Is the case In the main text. It fs felt that

the least confusion Is caused by removing the derivation to an Appendix.

A.l Hertz Vector

The geometry to be consldered iIs a conducting wire of radius b, surrounded
by a coaxtael fnsulating layer of thickness ¢-b and embedded in an extended region
as shown In Fligure A.l. The axis of the wire is taken to be the x-axis. As

Jemonstrated later, all boundary conditons are satisfied by using the x-component

of Hertz vector M alone. 1(n terms of the x component of the Hertz vector ﬂx,

the fleld Intensitles f and ﬁ are

¢ ~ anx; ~ anx; 2
IS S v SN (A1)
> a“xi A
Hy= -(o, + Iwe:) AT ¢ (A.2)
whare LW must be a solution of
Vi, ek Zm L = 0 (A.3)
X t X\

The continulty of the tangential components of the magnetic field Intensity, ﬁ,

at r=b and r=c requires that ORI

PRECEDING PAGE BLANK.NOT FILMED
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an an I

xc o . x -
(oc + Jwe ) 5o (c| + lwe‘) 5o at reb (A.5)
om o
x{ . xe -
(ca + fwe,) 57 (ce + Imee) Sr at r=c (A.5)

In the above equations, the subscript | stands for the quantities or terms related

to the insulating layer. Qs (A.4) and (A.5) are valld for all values of x, It Is

4w
: Xi
obvious that (o: + imez) T

Is also continuous at r=b and r=¢, which Implies

that the continuity of the normal components of the conduction and the displacement

currents, (0; + iwe;) E.;» Is automatically satisfled.

The continuity of the tangential electric field Intensity E at r=b and r=¢

requires that

92 9%
X 4 k2p = L. k, 2w at rsb (A.6)
ax2 c XC ax? i “xt
32y 327
-——fl»+ k%znx' = :e + kezwxe at r=c (A.7)
ox g ax

Since the interfaces rwb, -w<x<o, and r=c, -x<x<®, are the entire

cylindrical surfaces, it Is convenient to use Fourler transform with frespect

to x,
ﬁx(r,s,w) = ;%: J nx(r,x,w)e+ngdx (A.8)
ﬂ
® -
ﬂx(r,x,w) = ;é% ['w;(r.g.w)e jgxdg (A.9)

Applying the Fourler transform to (A.3) and noting that ﬂx Is independent of ¢,

the differential equation for ﬁ; Is greatly simplified to

o .
1.3 Xi 2,02V
= a (rs= ) +(k 2-E%)m =0
it Is {mmediately obvlious that the solutions for ix are the appropriate

cylindrical functions. Thus, for the conducting wire, (r<b), the Insulating
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region b<r<c, and the earth r>c, the appropriate expressions are, respectively,

: - [ ~jEx F
; e (Fax,w) == LooFo(t)Jo(Ecr)e dz (r < b) (A.10) ‘ :
| | 1
i © ;
5 - -Jex b< N
{ Ty (rax,w) o [u)[F,(;)Jo(g|r) +F @)Y (g r)]e " >dg, (b<ree) (A.11) f
% w (2) ; ;
1 T (rxow) = = f FolOH (g re P (r>c) (A.12) %
L where L ’ r
; f‘, , = »/k; - Cz . ’“
| To ensure the convergence of these integrals, the branch i

Re(£)>0, is chosen., F_, F , F2 and F3 are yet to be determined. In terms of these

functions, the axial current lx carrled by the conducting wire can be written as
b
lx(x,w) = 27 Jx(r,x,w)rdr

(o]

f
i
l
t
i
|
}

= V21 b(oc + imec)J gCFO(;)Jl(gcb)e"chdg (A.13)

-00

Vol ]
AN Y

Simite Oy d(x), Ex(b,x), as Introduced fn Sec. 4.1, can also be expressed in

terms of ¢, £, F , and Fs' Substituting these expressions Into (4.0-(4.13),

-Jx
e JFO(§)€C2JO(€Cb)e dz
Loy Jue) [ DT (e e (A.14)

-Jun, (o, + Jue ) [ (F, (@)1, (€ 00 (/0] + Fy () I, (E,c)-Y, (& c)]De ™ ar

Z, (x) =

‘ 2nb (o _+ue) j FRE 9 (£ bl Iy (A.15)
C 0. ane(oe+1wee) ng(c)Ho(Z)(Eec)e-chdt .

o 2nb(cc+Jch) IFO(C)Ech(ECb)e_ijdC (4.16)
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e
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= L Fi() [oge) -9 (g,b)] + Fo()[Y_(Ec) - YO(P;'C)]}Ce-ijd;

2. (x) =
T1 2mb (0 _+jue,) fz;ecFo(c)Jl(gcb)e'J Xy
(A7)
0 fCFs(c)Ho<2)(EGC)e'jcxdc
X) =
T2 amb (o tue ) ST F_(2)d1 (€ be ™ Par (A.18)

Strictly speaking, the Impedances are functlions of x, as exhibited In @.14)~(A.18).

However, only a moderate variation with respect to x over the major portions of

" the wire is expected, except near the points where Ix varies raptdly. Furthermore,

It can be shown that when the flelds under consideration are travelling waves,

these impedances are truly Independent of x. Thus, a good approximation to the
impedances can be obtained by considering the natural modes guided by the coaxial

configuration.

A.2 Natural Modes

For the natural modes, the external sources or excftations are absent and the
fields are completely specified by (A.10)-(A.12). To determine Fo’ Fx’ Fz, .’
and the propagation constant, equations (A.10)-(A.12). are required to satisfy the
boundary conditions (A.4)-(A.7). The resulting expressions are:

(0c+jweC)EcJ1(Ecb)Fo(c) - (o,+Jw€')£'[J1(E,b)F1(C) + Yl(C'b)Fz(C)] =0 (A.19)

(o, +Jue ) E (41 (€ c)Fi(5) + Y1 €c)F,(z)] - (oe+jwee)EeH,(2)(Eec)Fa(c) =0 (A.20)

6P (EDIF () = £ 21 (g bIF (5) + ¥ (£ bIFa(5)] = 0 (A.21)

&iz[do(§|c)F1(c) + YO(E'C)Fz(C)] - EQZHO(Z)(Eec)Fs(:) =0 (A.22)

(A.19)-(A.22) form a set of homogeneous algebraic equations for Fo' Fx' Fz, F’.

tor a set of nontrivial soiutions to exlst, {t ts necessary that
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Ao=4, (A.23)
_ where
; Oc+jw€c EI
o *jwe, E&_ Jx(gcb)Jo(g|b) - Jo(ﬁcb)31(5|b)
A m "¢ (A.24)
1 O'C+Ju,)Ec E‘ . -
57, E, J, (€ b)Y (g b) - J (g b)Y, (Eb) |
o *jwe &
e e °| (2) o (2)
5 ¥Tue, E, HTTH(Ee)d (Be) = H P20 (E c)d, (g c)
A = o *Jwe_ & (A.25)
Loy (2) (2)
? E%We*? MY (Ee) - BT E eI ()

Equation (A.23) is the dispersion relation and is used to solve for the propagation

constant. Also obtalned are the dependence of Fl, F2 and F3 on Fo:

e

FLALCMIErS = tonicus.

Pyl o ko 5 (g b)
F R T (a.26) |
F gy oot £ J (£,b) - TY,(&,b) |
s} ! | ! 171 |
|
Faled  -(o +iwe ) & TNL(EB) !
D N U 2 c
FI 7 o b fuey g, JEDR) - T (ED) (A.27)
Pl et b LRI, (EBpe) - T (B )] (A.28)
-t N 2
Y-’)\t’) RN Cez Hoﬁ (F,ec) [J1(5,b) - I'Yl(C'b)]
vihie g
oot o Gy 3 -
o, o DS ER) - J (BRI (E )

Looe
Al *,,(u('. ?‘

~

I = J(,"}u‘(i £ (A.29)

Sy (g b)Y _(gb) - 4 (£ b)Y, (g D)

ELTRRPARRERD S WX i ity




Let the propagation constant determined from (A.23) be dencted by T then
the current 'x on the wire must be determined by

~Jg % -
o) = 1o 0 = 18t de e (A.30)

where Io s a constant.

From {A.13) and (A.30), Fo can now be determlined,

loé(c-co)

Fo(g) =
V27 b(o_+Jue ) £ J;(E D) (A.31)

The evaluation of the integrals in (A.14)-(A.18) are greatly simplified by the

presence of the deltat function in (A.31). Thus,

EC JO(ECb)
= - (A.32)
2nb(o *tue ) 1 (5 b) o |
. -Jun (o, +juey)  Fu(@)[J (€ c)-d (g,b)] + F,(;)[Yo(ﬁ'c)-Yo(€|b)]| (A.33)
L, 2%5(0 +JGE ) -
1 SILN E.F, ()91 (£ ) ez,
Jup (o +juwe,)  Fy(z) HO(Z)(E c)
fL T TR L) e TEI (e £t (A.34)
* %o
;. -1 Fx(l)[Jo(€|C)'JO(E'b)] + Fz(t)[Yo(E|C)‘YO(E£b)] (A.35)
Ty 2molo +lue ) £.Fo(8)d1 (£ b) 5=z,
) 1 Fy(z) Ho(z)(ﬁeC)
1P Zﬂb(GC*JwBé) Fo(i) Echtgcsj ' = (A.36)

These expressions are valid In general. They can be simplified for highly conducting

wires by replacing the cylindrical functions with thelr appropriate approximations.
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APPENDIX B

Interna] and External Impedances
The internal and external! impedances of cylindrical conductors are required
when the frequency is such that the skin effect |s considered.
For a long cylindrical conductor oriented along the x-axls, with Internal L
or external coaxtal return, the Hertz potential ; Is independent of ¢ and x and

has a component In the x~direction only. Therefore, in equation (2.14),

nwo (8.1)

E=0 (8.2)
Hence '

T =k (8.3)

Therefore, the Hertz potential is explicitly chosen to be, ; = X, where
+ L]
L C1Jo(kp) czYo(kp) (B.4)
where cx and <, are arbitrary constants to be determined from the boundary

conditions. The field Intensities are determined by

- L2
E, =k T : (8.5)

Hx = 0 (B.6)
and

) .

Et AN (8.7)

B = —Jwk xxV_m (8.8)

t Juwe xx T .
Therefore, the only non-zero components of the fleld Intensities are

- k2
Ex (3 [clJo(kp) + czYo(kp)] (8.9)
Ho = -jwé kle J (kp) + ¢ Y (kp)] (8.10)
11 21

{f the conductor bas an Inside radlus Pe and an outside radius Py the magnetic
fleld Intensity H¢ at p = p. must be zero, provided the conductor current 'ext
returns outside of the conductor, and at p=p, must equal 'ext/2"p>' l.e., from

Ampere's Law e e e ———— e+
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2np<H¢l = 0 (B.11)
P=p,

tpmp,  ext (8-12)

Hence, with the values of H¢ from the above equation, the boundary econditions

2np>H

for c1 and c2 are
cldl(kp<) - czYl(kp<) = 0 (8.13)

J
- - 1 ext
clJl(kp>) szl(kp>) Jwe K 2ﬂ‘p> (B.14)

which are easily solved for c1 and c2 to vield

L1 loxt Yl(kp<)
1 Jue k  2wp, & (B.15)
c = 1 ‘ext J1<kp<) (B.16)
2 ~Jw€ k 2mp A '
where the determinant A is defined by
& = Jl(kp>)Y1(kp<) - Jl(kp<)Y1(kp>) (8.17)
Therefore, the Hertz vector becomes
o loxe  Yi(kpd (ko) = d {kp )Y (kp) (8.18)
x Juwe k 2mpg A ’
and the clectric field intensity In the x direction becomes
o loxe Yi(kp)d (k) ~ d,(kp )Y (kp) (B.19)
% Jwe Zmp, A

The ratio of the electric field along the outer surface p = P, to the total
eaternal current Is defined as the external surface impedance with external
return Zeé and» the corresponding ratio of the electric field along the inner

surface p = P to the total external current is defined as the internal surface

impedance with external return Zze. i.e.




€
X p-p A
Zee ® T - = j:,‘g 2"2) 'Ze (B.20)
ext >
"]
Tl 1 | | 1
2, = T o m—— e~ B.21)
le Iext ~Jwe 27 <Ps A (
where
= - Y
Bee Yl(k.p<\)-dq(k¢>.>) J1 (kp<) o(kp)) (8.22)
The following Wronskian refation has been used:
1
" Yl(kp<)J°(kp<) * Jl(kp<)vo(kp<) ko, (8.23)

. If the conductor hasan Inside radius P and outside radius D), the magnetic

fleld Intensity H._atAp=p>,must be zero, provided the conductor current ‘int

b
returns inside of the conductor, and at p=p  must equal ll t/21Tp<, t.e., from
: n

Ampere's Law
(B.24)

(8.25)
Hence, with the values of H¢ from the above equation, the boundary conditions

for ¢ and Cz are
1
<) - Y (k =0 8.26
¢ Jlkpg) = ¢ ¥ (kp,) ‘ | (8.26)
Int (8.27)

C1J1(kp<) - szl(kp<) " SJee K an<

which are easily solved fqr ci and cz to yield

c = | llnt Y:(kQ9
1 ~Jwg ko 2mp A

| e 9, (kp,)

Juwg k 2mp, A
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where the determinant A' is defined by

&= 9 (kp )Y (kpy)=d (kp )Y (ko) (B.30)

Therefore, the Hertz vector becomes

L bine Y, (ko) (kp)=d (kpy )Y (k) (8.31)
X Jwe k Zﬂp< Y
and the electric field intensity in the x direction becomes
C ke tine Y (ke )do (ked=d k)Y, (ko) (8.32)
X ~Jwe 21p, A *

The ratio of the electric field along the outer surface p=p, to the total Internal
current is defined as the external surface impedance with internal return Ze’;and,
the corresponding ratio of the electric fleld along the Inner surface p=p, to the

tota! internal current ls defined as the internal surface Impedance with Internal

sreturn Z”, i.e.,
E
xlp"D N
2T — - -jg’é“’ zmla u (8.33)
int < Y
E
x|p=py, 1 11 ]
7 = - o U (38.34)
el 'lnt - Jue  2m ppy 2
where
By = ¥ (key)d (ke )=d (kp, )Y (ko) (8.35)
The following Wronskian relation has been used:
]
Yx(kp>)Jo(kp>)+Jl(kp>)vo(kp>) - E'p"; (8.36)
Therefore, by superposition,
Ex|0-9> * Zoe'ext*Zel!int ' (8.37)
Ex|p-p< " Zelextir ! int (8.38)
Notice that i
A m - A \
Therefore 7 =2




For solld conductors (p< = 0), Zee is usuzlly referred to as the internal ?

Impedance Zi of the conductor, i.e.

k 1 Jotke,)
o0 €8 JuE_ 27 J](kp>)
<

DU LN

When the Bessel and Neumann functions are replaced by their asymptotic
expanslions for large values of their arguments, the following approximate

formulas are obtained, which apply for the type of cylindrical conductors

ordinarily encountered. 3%
z = ;—% Y [coth ot - g {5—3- + b-l-}j‘ (8.40) ,]
= Z., = 39- — . csch ot (B.41)
' el 2w /3:3;
Zo l
ie % 7 csch ot (B.42)
VN
. L% n (3 !
.dncﬁb: [cothot+-2-a- (-5: +-5:}:( (B.43)
where




APPENDIX C
Self and Mutual Impedances

The self andmutual Impedances of earth return conductors are requlred between
two current carrying paths, such as the paths C and C'as shown in Figure Gt.
The flelds due to a Hertzian dipole located on the curve C' and orlented

In the direction of the z' axis have the forr

( i 32
Ef =1 [z (R} +5-,2 Zt(R)] (c.1)
z
X2
E 1 o vt, Zt(R) (c.2)

Therefore, the fields due toga continuous distribution of infinitisimal dipoles

distributed along the curve C' have the form

1 b! 2

AN +a:2 Z,(R)] (¢.3)
) calb' .

E‘t - };| ! 8—32—7- Vi 2 (R) (C.4)

cl

The voltage V Impressed along the curve C in the same pliane as C' Is determined by

b b
Ve[ & Fw-] dz(z3E "' +%E") (c.5)
z t
[ [
¢ C
Therefore, .
b b a2
Ve-l [ & [ &' [-Z,(R)cosp + —=— Z (R)] (c.6)
' RTINS
a a
C ¢!
since
22" = cos ¢

~ a '
22 V = ——— gin .
t ’ az ! ¢ ~ . __..&-..‘ L A

e

.
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Fig. €1 Mutual impedance
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Between Two Wires C and C
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and

0 9 )
-é-i---é'z-,-cos¢+msln ¢

Tha voltage V is now evaluated as

bl
de. [ de' 2z (R) ¢ =12, (R)
£' gt €08 t '(b-a) (b'~a') (c

<l
[
DO

Cl
The mutual! Impedance between the two current paths ¢ and ¢' Is defined as

bl

b
2 et £ d [ det 2y (R)cos - Z,(R)|
c

<

t " (b-a)(b'-a') (c.

a|
CI

The double integral Is the mutual impedance between the current paths and
represents the longltudinal Impedance between the wires, while the second term
ls Independent of the current paths and represents the transverse Impedance

between the wire terminals through the surrounding medium,




and

() )
T 5—2—,—cos¢+wsin ¢

The voltage V is now evaluated as

al

b b
Vet [ def
a

c c'

de! ZR(R) cosd -nzt(R)'
(b~a) (b'~a') (c.7)

The mutual impedance between the two current paths ¢ and ¢' Is defined as

bl

b

7 = -—={dg d2' 2,(R)cos¢ ~ Z_(R)
e P
c

m

a' -a') (r.%)

Ct
The double integral 1s the mutual Impedance between the current paths and
represents the longltudinal impedance between the wires, while the second term
ls Independent of the current paths and represents the transverse impedance

between the wire terminals through the surrounding medium.
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Florida institute of Technology - Cable Testing

Dr. Andrew W. Revay, Jr.
Richard M. Cosel

Lightning and Transient Research Institute - High Voltage Facility

James C. Stahmann

Purdue University ~ Protective Devices
Warren Peele (Project Leader)
Dr. Chin-Lin Chen

Georgia Institute of Technology - Equipment Analysis
Keith Huddleston

Dr. Ronal Larson
Dr. John Nordgard

Alr Force Institute of Technology - Reliability Aspects

Lt. Col., Jerry L. Hanson
Professor T. L. Regullnskl




